Preprint
Article

Light Absorption Enhancement and Laser-Induced Damage Ability Improvement of AA 6061 with Non-porous Alumina /CdSe@Al2O3/SiO2 Functional Gradient Films

This version is not peer-reviewed.

Submitted:

02 January 2022

Posted:

12 January 2022

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Numerical calculations of ultraviolet to near-infrared absorption spectra by cadmium selenide quantum dots (CdSe QDs) doped in anodic aluminum oxide pores were performed using a finite-difference time-domain model. The height, diameter, and periodic spacing of the pores were optimized. Light absorption by the dots was enhanced by increasing the height and decreasing the diameter of the pores. When the height was less than 1 μm, visible light absorption was enhanced as the spacing was reduced from 400 nm to 100 nm. No enhancement was observed for heights greater than 6 μm. Finally, the optical mode coupling of the aluminum oxide and the quantum dots was enhanced by decreasing the pore diameter and periodic spacing, and increasing the height. Laser ablation verified light absorption enhancement by the CdSe QDs. The experiment verified the improvement of the laser-induced damage ability with wavelength of 355-nm after aluminum alloy 6061 coated with functional films, which was fabricated based on numerical calculations.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

186

Views

278

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated