Preprint Article Version 2 Preserved in Portico This version is not peer-reviewed

Nanotechnology Applications Towards Sustainable Road Sur-face Maintenance and Effective Asset Protection, Generating Rapid Employment Opportunities in a Post COVID-19 Era

Version 1 : Received: 28 December 2021 / Approved: 6 January 2022 / Online: 6 January 2022 (17:12:15 CET)
Version 2 : Received: 24 January 2022 / Approved: 25 January 2022 / Online: 25 January 2022 (17:34:49 CET)

A peer-reviewed article of this Preprint also exists.

Jordaan, G.J.; Steyn, W.J.V. Nanotechnology Applications towards Sustainable Road Surface Maintenance and Effective Asset Protection, Generating Rapid Employment Opportunities in a Post COVID-19 Era. Appl. Sci. 2022, 12, 2628. Jordaan, G.J.; Steyn, W.J.V. Nanotechnology Applications towards Sustainable Road Surface Maintenance and Effective Asset Protection, Generating Rapid Employment Opportunities in a Post COVID-19 Era. Appl. Sci. 2022, 12, 2628.

Abstract

: Nanotechnology options to road surface maintenance offers several advantages compared to traditionally used materials. The small particle sizer of hydrophobic Nano-Silane modified Nano-Polymers (NSNP) enables these nanotechnology products to deeply penetrate existing road surfaces, sealing micro-cracks and render surfacings to be water-resistant for extended periods of time. In comparison, traditionally used products contain minimum partial sizes of about 1 – 5 microns, that provide a superficial protection that wears off in a relatively short period of time. These traditional products are often associated with vehicle contamination while drying and requires the re-instatement of road markings. None of these disadvantages are associated with applicable NSNP technologies that are quick drying, with no vehicle contamination risks and is equivalent to a “clear-seal” requiring no reinstatement of road markings. In a similar vein, pot-hole repairs can be done using applicable, easy to use, pre-packed and treated pot-hole repair kits that are water-repellent and quick-drying at a fraction of the costs of conventional cold-mix products. Resurfacing using NME binder slurries can be done labour-intensively on a pre-treated NSNP surfacing, restoring cracked surfacing and providing a water-resistant long-lasting protective layer without the removal of existing cracked areas. The implementation of nanotechnology solutions for road surface maintenance operations is directly associated with ease of use, labour-intensive operations, prevention of considerable deterioration in riding quality due to removal and manual re-instatement of cracked surfaces, time and cost savings and a reduction in the risk of water damage to the sub-structure. TRANSLATE with x English ArabicHebrewPolish BulgarianHindiPortuguese CatalanHmong DawRomanian Chinese SimplifiedHungarianRussian Chinese TraditionalIndonesianSlovak CzechItalianSlovenian DanishJapaneseSpanish DutchKlingonSwedish EnglishKoreanThai EstonianLatvianTurkish FinnishLithuanianUkrainian FrenchMalayUrdu GermanMalteseVietnamese GreekNorwegianWelsh Haitian CreolePersian TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster Portal Back TRANSLATE with x English ArabicHebrewPolish BulgarianHindiPortuguese CatalanHmong DawRomanian Chinese SimplifiedHungarianRussian Chinese TraditionalIndonesianSlovak CzechItalianSlovenian DanishJapaneseSpanish DutchKlingonSwedish EnglishKoreanThai EstonianLatvianTurkish FinnishLithuanianUkrainian FrenchMalayUrdu GermanMalteseVietnamese GreekNorwegianWelsh Haitian CreolePersian TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster Portal Back

Keywords

nanotechnology applications in road maintenance; preventative road surface maintenance; nanotechnology clear-seals; New-age (Nano) Modified Emulsions (NME); pot-hole repairs; modified binder slurry seals; hydrophobic slurries; hydrophobic road surface sealants; labour intensive maintenance; rapid employment creation through nanotechnology usage in road maintenance

Subject

Engineering, Civil Engineering

Comments (1)

Comment 1
Received: 25 January 2022
Commenter: Gerrit Jordaan
Commenter's Conflict of Interests: Author
Comment: Nanotechnology Applications Towards Sustainable Road Surface Maintenance and Effective Asset Protection, Generating Rapid Employment Opportunities in a Post COVID-19 Era TRANSLATE with x English ArabicHebrewPolish BulgarianHindiPortuguese CatalanHmong DawRomanian Chinese SimplifiedHungarianRussian Chinese TraditionalIndonesianSlovak CzechItalianSlovenian DanishJapaneseSpanish DutchKlingonSwedish EnglishKoreanThai EstonianLatvianTurkish FinnishLithuanianUkrainian FrenchMalayUrdu GermanMalteseVietnamese GreekNorwegianWelsh Haitian CreolePersian TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster Portal Back
+ Respond to this comment

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 1
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.