Preprint
Review

This version is not peer-reviewed.

Deep Learning Methods Applied to 3D Point Clouds Based Instance Segmentation: A Review

Submitted:

11 November 2021

Posted:

12 November 2021

You are already at the latest version

Abstract
Beyond semantic segmentation,3D instance segmentation(a process to delineate objects of interest and also classifying the objects into a set of categories) is gaining more and more interest among researchers since numerous computer vision applications need accurate segmentation processes(autonomous driving, indoor navigation, and even virtual or augmented reality systems…) This paper gives an overview and a technical comparison of the existing deep learning architectures in handling unstructured Euclidean data for the rapidly developing 3D instance segmentation. First, the authors divide the 3D point clouds based instance segmentation techniques into two major categories which are proposal based methods and proposal free methods. Then, they also introduce and compare the most used datasets with regard to 3D instance segmentation. Furthermore, they compare and analyze these techniques performance (speed, accuracy, response to noise…). Finally, this paper provides a review of the possible future directions of deep learning for 3D sensor-based information and provides insight into the most promising areas for prospective research.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated