You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

The Bipolar Logic of Feedforward and Feedback Circuits

Altmetrics

Downloads

204

Views

153

Comments

0

This version is not peer-reviewed

Submitted:

07 November 2021

Posted:

08 November 2021

You are already at the latest version

Alerts
Abstract
Instead of the conventional 0 and 1 values, bipolar reasoning uses -1, 0, +1 to describe double-sided judgements in which neutral elements are halfway between positive and negative evaluations (e.g., “uncertain” lies between “impossible” and “totally sure”). We discuss the state-of-the-art in bipolar logics and recall two medieval forerunners, i.e., William of Ockham and Nicholas of Autrecourt, who embodied a bipolar mode of thought that is eminently modern. Starting from the trivial observation that “once a wheat sheaf is sealed and tied up, the packed down straws display the same orientation”, we work up a new theory of the bipolar nature of networks, suggesting that orthodromic (i.e., feedforward, bottom-up) projections might be functionally coupled with antidromic (i.e., feedback, top-down) projections via the mathematical apparatus of presheaves/globular sets. When an entrained oscillation such as a neuronal spike propagates from A to B, changes in B might lead to changes in A, providing unexpected antidromic effects. Our account points towards the methodological feasibility of novel neural networks in which message feedback is guaranteed by backpropagation mechanisms endowed in the same feedforward circuits. Bottom-up/top-down transmission at various coarse-grained network levels provides fresh insights in far-flung scientific fields such as object persistence, memory reinforcement, visual recognition, Bayesian inferential circuits and multidimensional activity of the brain. Implying that axonal stimulation by external sources might backpropagate and modify neuronal electric oscillations, our theory also suggests testable previsions concerning the optimal location of transcranial magnetic stimulation’s coils in patients affected by drug-resistant epilepsy.
Keywords: 
Subject: Computer Science and Mathematics  -   Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated