Preprint
Article

This version is not peer-reviewed.

History-dependent Stress Relaxation of Liquids Under High-confinement: A Molecular Dynamics Study

A peer-reviewed article of this preprint also exists.

Submitted:

01 November 2021

Posted:

03 November 2021

You are already at the latest version

Abstract
When liquids are confined into nanometer-scale slit, the induced layering-like film structure allows the liquid to sustain non-isotropic stresses and thus being load-bearing. Such anisotropic characteristics of liquid under confinement arise naturally from the liquids’ wave number dependent compressibility that does not need solidification to take place as a prerequisite. In other words, liquids under confinement can still remain fluidity with molecules being (sub-)diffusive. However, the extensively prolonged structural relaxation time can cause hysteresis of stress relaxation of confined molecules in response to the motions of confining walls and thereby yield the quasi-static stress tensor history-dependent. In this work, by means of molecule dynamics, the discrepancy of stress tensor of a highly confined key base-oil component, i.e. 1-decene trimer, is captured after its relaxation from being compressed and decompressed. The results indicate that among the effects (e.g. confinement, molecular structure, and film density) that can potentially affect confined stress tensor, the ordering status of the confined molecules plays a predominant role.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated