The main idea of this paper is to investigate the exact solutions and dynamic properties in optical nanofibers, which is modeled by space-time fractional perturbed nonlinear schr\"odinger equation involving Kerr law nonlinearity with conformal fractional derivative. Firstly, by the complex fractional traveling wave transformation, the traveling wave system of the original equation is obtained, then a conserved quantity, namely the Hamiltonian is constructed, and the qualitative analysis of this system is conducted via this quantity by classifying the equilibrium points. Moreover, the prior estimate of the existence of the soliton and periodic solution is established via the bifurcation method. Furthermore, all exact traveling wave solutions are constructed to illustrate our results explicitly by the complete discrimination system for polynomial method.