Preprint
Article

This version is not peer-reviewed.

Modeling Brittle Fracture in Epoxy Nanocomposites using Extended Finite Element and Cohesive Zone Surface Methods

A peer-reviewed article of this preprint also exists.

Submitted:

16 September 2021

Posted:

21 September 2021

You are already at the latest version

Abstract
Linear elastic fracture modeling coupled with empirical material tension data result in good quantitative agreement with experimental measurements of fracture failure for both brittle and tough epoxy nanocomposites. The nanocomposites comprise diglycidyl ethers of bisphenol A cured with O,O’ bis (2-aminopropylpropylene glycol) (Jeffamine D230) and doped with rubber nanoparticles of varying concentrations. Toughness, critical load, and critical displacement in quasi-static single edge-notched three-point bending are predicted accurately using both surface-based cohesive zone (CZS) and extended finite element (XFEM) methods implemented in Abaqus software. Fracture initiation within a crack is taken at the yield stress from uniaxial tension data. Prediction of fracture processes using a generalized truncated linear traction-separation law was significantly improved by considering the case of a linear softening function. There are no adjustable parameters in the XFEM model. The CZS model requires only optimization of the element displacement at fracture parameter. Thus, these continuum methods describe these materials in mode I fracture with a minimum number of independent parameters.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated