Working Paper Article Version 1 This version is not peer-reviewed

Integrating EfficientNet into an HAFNet structure for Building Mapping in High-Resolution Optical Earth Observation Data

Version 1 : Received: 18 August 2021 / Approved: 19 August 2021 / Online: 19 August 2021 (08:50:20 CEST)

A peer-reviewed article of this Preprint also exists.

Ferrari, L.; Dell’Acqua, F.; Zhang, P.; Du, P. Integrating EfficientNet into an HAFNet Structure for Building Mapping in High-Resolution Optical Earth Observation Data. Remote Sens. 2021, 13, 4361. Ferrari, L.; Dell’Acqua, F.; Zhang, P.; Du, P. Integrating EfficientNet into an HAFNet Structure for Building Mapping in High-Resolution Optical Earth Observation Data. Remote Sens. 2021, 13, 4361.

Journal reference: Remote Sens. 2021, 13, 4361
DOI: 10.3390/rs13214361

Abstract

Automated extraction of buildings from earth observation (EO) data is important for various applications, including updating of maps, risk assessment, urban planning, policy making. Combining data from different sensors such as high-resolution multispectral (HRI) and light detection and ranging (LiDAR) has shown great potential in building extraction. Deep learning (DL) is increasingly used in multimodal data fusion and urban object extraction. However, DL-based multimodal fusion networks may underperform due to insufficient learning of “joint features” from multiple sources and oversimplified approaches to fusing multimodal features. Recently, an hybrid attention-aware fusion network (HAFNet) has been proposed for building extraction from a dataset including co-located Very-High-Resolution (VHR) optical images and Light Detection And Ranging (LiDAR) joint data. The system reported good performances thanks to the adaptivity of the attention mechanism to the features of the information content of the three streams but suffered from model overparametrization, which inevitably leads to long training times and heavy computational load. In this paper the authors propose a restructuring of the scheme, which involved replacing VGG-16-like encoders with the recently proposed EfficientNet, whose advantages counteract exactly the issues found with the HAFNet scheme. The novel configuration was tested on multiple benchmark datasets, reporting great improvements in terms of processing times, and also in terms of accuracy. The new scheme, called HAFNetE (HAFNet with EfficientNet integration), appears indeed capable of achieving good results with less parameters, translating into better computational efficiency. Based on these findings, we can conclude that, given the current advancements in single-thread schemes, the classical multi-thread HAFNet scheme could be effectively transformed by the HAFNetE scheme by replacing VGG-16 with EfficientNet blocks on each single thread. The remarkable reduction achieved in computational requirements moves the system one step closer to on-board implementation in a possible, future “urban mapping” satellite constellation.

Keywords

attention mechanism; building mapping; data fusion; EfficientNet; HAFNet; high-resolution imagery (HRI); light detection and ranging (LiDAR); mapping; urban areas

Subject

MATHEMATICS & COMPUTER SCIENCE, Artificial Intelligence & Robotics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.