Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Spatial Warped Gaussian Processes: Estimation and Efficient Field Reconstruction

Version 1 : Received: 10 August 2021 / Approved: 11 August 2021 / Online: 11 August 2021 (10:39:35 CEST)

A peer-reviewed article of this Preprint also exists.

Peters, G.W.; Nevat, I.; Nagarajan, S.G.; Matsui, T. Spatial Warped Gaussian Processes: Estimation and Efficient Field Reconstruction. Entropy 2021, 23, 1323. Peters, G.W.; Nevat, I.; Nagarajan, S.G.; Matsui, T. Spatial Warped Gaussian Processes: Estimation and Efficient Field Reconstruction. Entropy 2021, 23, 1323.

Journal reference: Entropy 2021, 23, 1323
DOI: 10.3390/e23101323

Abstract

A class of models for non-Gaussian spatial random fields is explored for spatial field reconstruction in environmental and sensor network monitoring. The family of models explored utilises a class of transformation functions known as the Tukey g-and-h transformations to create a family of warped spatial Gaussian process models which can support various desirable features such as flexible marginal distributions, which can be skewed, leptokurtic and/or heavy-tailed. The resulting model is widely applicable in a range of spatial field reconstruction applications. To utilise the model in applications in practice, it is important to carefully characterise the statistical properties of the Tukey g-and-h random fields. In this work, we both study the properties of the resulting warped Gaussian processes as well as using the characterising statistical properties of the warped processes to obtain flexible spatial field reconstructions. In this regard, we derive five different estimators for various important quantities often considered in spatial field reconstruction problems. These include the multi-point Minimum Mean Squared Error (MMSE) estimators; the multiple point Maximum A-Posteriori (MAP) estimators; an efficient class of multiple-point linear estimators based on the Spatial-Best Linear Unbiased (S-BLUE) estimators; and two multi-point threshold exceedance based estimators, namely the Spatial Regional and Level Exceedance estimators. Simulation results and real data examples show the benefits of using the Tukey g-and-h transformation as opposed to standard Gaussian spatial random fields in a real data application for environmental monitoring.

Keywords

Random fields; warped Gaussian Process; Spatial field reconstruction

Subject

MATHEMATICS & COMPUTER SCIENCE, Probability and Statistics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.