The basic idea is to expand the completed zeta function $\xi(s)$ in MacLaurin series (infinite polynomial), which can be further expressed as infinite product (Hadamard product) by conjugate complex roots $\alpha_i\pm j\beta_i, i\in \mathbb{N}$. Then, according to the functional equation $\xi(s)=\xi(1-s)$, we have $$\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(s-\alpha_i)^2}{\beta_i^2}\Big{)} =\xi(0)\prod_{i=1}^{\infty}\frac{\beta_i^2}{\alpha_i^2+\beta_i^2}\Big{(}1+\frac{(1-s-\alpha_i)^2}{\beta_i^2}\Big{)}$$ which is equivalent to $$(s-\alpha_i)^2 = (1-s-\alpha_i)^2, i \in \mathbb{N}$$ with solution $\alpha_i= \frac{1}{2}, i\in \mathbb{N}$. Therefore, a proof of the Riemann Hypothesis can be achieved.