Preprint
Article

Genotype Pattern Mining for Pairs of Interacting Variants Underlying Digenic Traits

Altmetrics

Downloads

151

Views

240

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

21 July 2021

Posted:

26 July 2021

You are already at the latest version

Alerts
Abstract
Some genetic diseases (“digenic traits”) are due to the interaction between two DNA variants, which presumably reflects biochemical interactions. For example, certain forms of Retinitis Pigmentosa, a type of blindness, occur in the presence of two mutant variants, one each in the ROM1 and RDS genes, while occurrence of only one such variant results in a normal phenotype. Detecting variant pairs underlying digenic traits by standard genetic methods is difficult and is downright impossible when individual variants alone have minimal effects. Frequent Pattern Mining (FPM) methods are known to detect patterns of items. We make use of FPM approaches to find pairs of genotypes (from different variants) that can discriminate between cases and controls. Our method is based on genotype patterns of length two, and permutation testing allows assigning p-values to genotype patterns, where the null hypothesis refers to equal pattern frequencies in cases and controls. We compare different interaction search approaches and their properties on the basis of published datasets. Our implementation of FPM to case-control studies is freely available.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated