Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Improving the Accuracy of Gridded Population Estimates in Cities and Slums to Monitor SDG 11: Evidence from a Simulation Study in Namibia

Version 1 : Received: 21 July 2021 / Approved: 22 July 2021 / Online: 22 July 2021 (09:15:06 CEST)

A peer-reviewed article of this Preprint also exists.

Thomson, D.R.; Stevens, F.R.; Chen, R.; Yetman, G.; Sorichetta, A.; Gaughan, A.E. Improving the Accuracy of Gridded Population Estimates in Cities and Slums to Monitor SDG 11: Evidence from a Simulation Study in Namibia. Land Use Policy 2022, 123, 106392, doi:10.1016/j.landusepol.2022.106392. Thomson, D.R.; Stevens, F.R.; Chen, R.; Yetman, G.; Sorichetta, A.; Gaughan, A.E. Improving the Accuracy of Gridded Population Estimates in Cities and Slums to Monitor SDG 11: Evidence from a Simulation Study in Namibia. Land Use Policy 2022, 123, 106392, doi:10.1016/j.landusepol.2022.106392.

Abstract

People living in slums and other deprived areas in low- and middle-income country (LMIC) cities are under-represented in censuses, and subsequently in "top-down" gridded population estimates. Modelled gridded population data are a unique source of disaggregated population information to calculate local development indicators such as the Sustainable Development Goals (SDGs). This study evaluates if, and how, WorldPop-Global (WPG) -Unconstrained and -Constrained “top-down” datasets might be improved in a simulated realistic LMIC urban population by incorporating slum profile population counts into model training. We found that the WPG-Unconstrained model with or without slum training data grossly underestimated population in urban deprived areas while grossly overestimating population in rural areas. SDG 11.1.1, the percent of population living in slums, for example, was estimated to be 20% or less compared to a "true" value of 29.5%. The WPG-Constrained model, which included building auxiliary datasets, far more accurately estimated the population in all grid cells (including rural areas), and the inclusion of slum training data further improved estimates such that SDG 11.1.1 was estimated at 27.1% and 27.0%, respectively. Inclusion of building metrics and slum training data in “top-down” gridded population models can substantially improve grid cell-level accuracy in both urban and rural areas.

Keywords

LMIC; urban; deprivation; informal settlement; poverty; Global South

Subject

Business, Economics and Management, Accounting and Taxation

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.