Preprint
Article

A Blockchain-Based Multi-Factor Authentication Model for Cloud-Enabled Internet of Vehicles

Submitted:

18 July 2021

Posted:

20 July 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Continuous and emerging advances in Information and Communication Technology (ICT) have enabled IoT-to-Cloud applications to be induced by data pipelines coupled with Edge Intelligence-based architectures. Advanced vehicular networks greatly benefit from these architectures due to the implicit functionalities that are focused on realizing the Internet-of-Vehicle (IoV) vision. However, IoV is susceptible to attacks, where adversaries can easily exploit existing vulnerabilities. Several attacks may succeed due to inadequate or weaker authentication techniques. Hence, there is a timely need for hardening the authentication process through cutting-edge access control mechanisms. This paper proposes a Blockchain-based Multi-Factor authentication model that uses an embedded Digital Signature (MFBC_eDS) for vehicular clouds and Cloud-enabled IoV. Our proposed MFBC_eDS model consists of a scheme that integrates the Security Assertion Mark-up Language (SAML) to the Single Sign-On (SSO) capabilities for a connected Edge-to Cloud ecosystem. MFBC_eDS draws an essential comparison with the baseline authentication scheme suggested by Karla and Sood. Based on the foundations of Karla and Sood’s scheme, an embedded Probabilistic Polynomial-Time Algorithm (ePPTA) and an additional Hash function for the Pi generated during Karla and Sood’s authentication are proposed and discussed. The preliminary analysis of the proposition shows that the approach is more suitable to counter major adversarial attacks in an IoV-centered environment based on Dolev-Yao adversarial model while satisfying aspects of the CIA triad.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

341

Views

359

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated