Working Paper Article Version 1 This version is not peer-reviewed

New Results on the (SSIE) with Operator of the Form F E + F0x Involving the Spaces of Strongly Summable and Convergent Sequences by the Cesàro Method

Version 1 : Received: 18 June 2021 / Approved: 24 June 2021 / Online: 24 June 2021 (16:42:44 CEST)

A peer-reviewed article of this Preprint also exists.

de Malafosse, B. New Results on the SSIE with an Operator of the form FΔEFx′ Involving the Spaces of Strongly Summable and Convergent Sequences using the Cesàro Method+. Axioms 2021, 10, 157. de Malafosse, B. New Results on the SSIE with an Operator of the form FΔ⊂EFx′ Involving the Spaces of Strongly Summable and Convergent Sequences using the Cesàro Method+. Axioms 2021, 10, 157.

Journal reference: Axioms 2021, 10, 157
DOI: 10.3390/axioms10030157

Abstract

Given any sequence a = (an)n1 of positive real numbers and any set E of complex sequences, we write Ea for the set of all sequences y = (yn)n1 such that y=a = (yn=an)n1 2 E. In this paper, we use the spaces w1, w0 and w of strongly bounded, summable to zero and summable sequences, that are the sets of all sequences y such that ? n?1Pn k=1 jykj  n is bounded, tends to zero and such that y ? le 2 w0, for some scalar l, respectively, (cf. [24, 22]). These sets where used in the statistical convergence, (cf. [17, Chapter 4]). Then we deal with the solvability of each of the (SSIE) F  E + F0x where E is a linear space of sequences, F = c0, c, `1, w0, w, or w1 and F0 = c0, c, or `1. For instance, the solvability of the (SSIE) w  w0+s(c) x consists in determining the set of all sequences x = (xn)n1 2 U+ that satisfy the following statement. For every sequence y that satisfy the condition limn!1 n?1Pn k=1 jyk ? yk?1 ? lj = 0, there are two sequences u and v, with y = u+v such that limn!1 n?1Pn k=1 jukj = 0 and limn!1 (vn=xn) = L for some scalars l and L. These results extend those stated in [11, 12, 10].

Keywords

BK space, matrix transformations, multiplier of sequence spaces, sequence spaces inclusion equations.

Subject

MATHEMATICS & COMPUTER SCIENCE, Algebra & Number Theory

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.