Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Time-division Color Holographic Projection in Large Size Using a Digital Micromirror Device

Version 1 : Received: 15 June 2021 / Approved: 16 June 2021 / Online: 16 June 2021 (10:33:00 CEST)

A peer-reviewed article of this Preprint also exists.

Takahashi, T.; Shimobaba, T.; Kakue, T.; Ito, T. Time-Division Color Holographic Projection in Large Size Using a Digital Micromirror Device. Appl. Sci. 2021, 11, 6277. Takahashi, T.; Shimobaba, T.; Kakue, T.; Ito, T. Time-Division Color Holographic Projection in Large Size Using a Digital Micromirror Device. Appl. Sci. 2021, 11, 6277.

Abstract

Holographic projection is a simple projection because it enlarges or reduces reconstructed images without using a zoom lens. However, one major problem associated with this projection is the deterioration of image quality as the reconstructed image enlarges. In this paper, we propose a time-division holographic projection, in which the original image is divided into blocks and the holograms of each block are calculated. Using a digital micromirror device (DMD), the holograms were projected at high speed to obtain the entire reconstructed image. However, the holograms on the DMD need to be binarized, thereby causing uneven brightness between the divided blocks. We correct this by controlling the displaying time of each hologram. Additionally, combining both the proposed and noise reduction methods, the image quality of the reconstructed image was improved. Results from the simulation and optical reconstructions show we obtained a full-color reconstruction image with reduced noise and uneven brightness.

Keywords

holography; hologram; computer-generated hologram; holographic projection; time-division; digital micromirror device

Subject

Physical Sciences, Acoustics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.