Preprint
Article

This version is not peer-reviewed.

Similarity approximation of Twitter Profiles

Submitted:

06 June 2021

Posted:

07 June 2021

Read the latest preprint version here

Abstract
Social media platforms are entirely an undeniable part of the lifestyle from the past decade. Analyzing the information being shared is a crucial step to understand humans behavior. Social media analysis is aiming to guarantee a better experience for the user and risen user satisfaction. But first, it is necessary to know how and from which aspects to compare users with each other. In this paper, an intelligent system has been proposed to measure the similarity of Twitter profiles. For this, firstly, the timeline of each profile has been extracted using the official Twitter API. Then, all information is given to the proposed system. Next, in parallel, three aspects of a profile are derived. Behavioral ratios are time-series-related information showing the consistency and habits of the user. Dynamic time warping has been utilized for comparison of the behavioral ratios of two profiles. Next, Graph Network Analysis is used for monitoring the interactions of the user and its audience; for estimating the similarity of graphs, Jaccard similarity is used. Finally, for the Content similarity measurement, natural language processing techniques for preprocessing and TF-IDF for feature extraction are employed and then compared using the cosine similarity method. Results have presented the similarity level of different profiles. As the case study, people with the same interest show higher similarity. This way of comparison is helpful in many other areas. Also, it enables to find duplicate profiles; those are profiles with almost the same behavior and content.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated