Various products of the Integrated Multisatellite Retrievals for GPM (IMERG) and passive mi-crowave (PMW) sensors are assessed with respect to near-surface wet-bulb temperature (Tw), precipitation intensity, and surface type (i.e., with and without snow and ice on the surface) over the CONUS and using Stage-IV product as reference precipitation. IMERG products include precipitation estimates from infrared (IR), combined PMW, and their combination. PMW products generally have higher skills than IR over snow- and ice-free surfaces. Over snow- and ice-covered surfaces (1) PMW products (except AMSR-2) show a higher correlation coefficient than IR, (2) IR and PMW precipitation products tend to overestimate precipitation, but at colder temperatures (e.g., Tw<-10oC) PMW products tend to underestimate and IR product continues to show large overestimations, and (3) PMW sensors show higher overall skill in detecting precipitation oc-currence, but not necessarily at very cold Tw. The results suggest that the current approach of IMERG (i.e., replacing PMW with IR precipitation estimates over snow- and ice-surfaces) may need to be revised.