You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Circuit Complexity from Cosmological Islands

Altmetrics

Downloads

193

Views

261

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

25 May 2021

Posted:

26 May 2021

You are already at the latest version

Alerts
Abstract
Recently in various theoretical works, path-breaking progress has been made in recovering the well-known Page Curve of an evaporating black hole with Quantum Extremal Islands, proposed to solve the long-standing black hole information loss problem related to the unitarity issue. Motivated by this concept, in this paper, we study cosmological circuit complexity in the presence (or absence) of Quantum Extremal Islands in negative (or positive) Cosmological Constant with radiation in the background of Friedmann-Lemaî tre-Robertson-Walker (FLRW) space-time. Without using any explicit details of any gravity model, we study the behaviour of the circuit complexity function with respect to the dynamical cosmological solution for the scale factors for the above mentioned two situations in FLRW space-time using squeezed state formalism. By studying the cosmological circuit complexity, Out-of-Time Ordered Correlators, and entanglement entropy of the modes of the squeezed state, in different parameter space, we conclude the non-universality of these measures. Their remarkably different features in the different parameter space suggests their dependence on the parameters of the model under consideration.
Keywords: 
Subject: Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated