Preprint
Article

Non-Commutative Key Exchange Protocol

Altmetrics

Downloads

305

Views

319

Comments

0

Submitted:

06 May 2021

Posted:

10 May 2021

You are already at the latest version

Alerts
Abstract
We introduce a novel key exchange protocol based on non-commutative matrix multiplication defined in $\mathbb{Z}_p^{n \times n}$. The security of our method does not rely on computational problems as integer factorization or discrete logarithm whose difficulty is conjectured. We claim that the unique eavesdropper's opportunity to get the secret/private key is by means of an exhaustive search which is equivalent to the unsorted database search problem. Furthermore, we show that the secret/private keys become indistinguishable to the eavesdropper. Remarkably, to achieve a 512-bit security level, the keys (public/private) are of the same size when matrix multiplication is done over a reduced 8-bit size modulo. Also, we discuss how to achieve key certification and Perfect Forward Secrecy (PFS). Therefore, Lizama's algorithm becomes a promising candidate to establish shared keys and secret communication between (IoT) devices in the quantum era.
Keywords: 
Subject: Computer Science and Mathematics  -   Computational Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Non-Commutative Key Exchange Protocol

Luis Adrián Lizama-Pérez

et al.

,

2021

Non-invertible Public Key Certificates

Luis Lizama-Pérez

et al.

,

2020

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated