Preprint
Review

Overview of Nano-fiber Bundles Fabrication via Electrospinning and Morphology Analysis

This version is not peer-reviewed.

Submitted:

25 April 2021

Posted:

27 April 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Electro-spun ultra-fine fibers exhibit two significant properties: a high surface-to-volume ratio and a relatively defect-free molecular structure. Due to the high surface-to-volume ratio, electro-spun materials are well suited for activities requiring increased physical contact, such as providing a site for a chemical reaction or filtration of small-sized physical materials. However, electrospinning has many shortcomings, including difficulties in producing inorganic nanofibers and a limited number or variety of polymers used in the process. The fabrication of nanofiber bundles via electrospinning is explored in this analytical study, as well as the relationship between extrinsic electrospinning parameters and the relative abundance of various fiber morphologies. Numerous variables could impact the fabrication of nanofibers, resulting in a variety of morphologies; therefore, adequate ambient conditions and selecting the appropriate solvent for achieving a homogenous polymer solution and uniform electro-spun materials are examined. Finally, common polymers suitable for electrospinning and the promising applications of ultra-fine fibers achieved via electrospinning are studied in this paper.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

417

Views

391

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated