Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS

Version 1 : Received: 21 April 2021 / Approved: 23 April 2021 / Online: 23 April 2021 (10:20:09 CEST)

A peer-reviewed article of this Preprint also exists.

Nosratabadi, S.; Ardabili, S.; Lakner, Z.; Mako, C.; Mosavi, A. Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS. Agriculture 2021, 11, 408. Nosratabadi, S.; Ardabili, S.; Lakner, Z.; Mako, C.; Mosavi, A. Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS. Agriculture 2021, 11, 408.

Abstract

Advancing models for accurate estimation of food production is essential for policymaking and managing national plans of action for food security. This research proposes two machine learning models for the prediction of food production. The adaptive network-based fuzzy inference system (ANFIS) and multilayer perceptron (MLP) methods are used to advance the prediction models. In the present study, two variables of livestock production and agricultural production were considered as the source of food production. Three variables were used to evaluate livestock production, namely livestock yield, live animals, and animal slaughtered, and two variables were used to assess agricultural production, namely agricultural production yields and losses. Iran was selected as the case study of the current study. Therefore, time-series data related to livestock and agricultural productions in Iran from 1961 to 2017 have been collected from the FAOSTAT database. First, 70% of this data was used to train ANFIS and MLP, and the remaining 30% of the data was used to test the models. The results disclosed that the ANFIS model with Generalized bell-shaped (Gbell) built-in membership functions has the lowest error level in predicting food production. The findings of this study provide a suitable tool for policymakers who can use this model and predict the future of food production to provide a proper plan for the future of food security and food supply for the next generations.

Keywords

Food production; machine learning; agricultural production; prediction model

Subject

Computer Science and Mathematics, Algebra and Number Theory

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.