Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

The Clinical Application of Porous Tantalum and Its New Development for Bone Tissue Engineering

Version 1 : Received: 12 April 2021 / Approved: 13 April 2021 / Online: 13 April 2021 (11:36:57 CEST)

A peer-reviewed article of this Preprint also exists.

Huang, G.; Pan, S.-T.; Qiu, J.-X. The Clinical Application of Porous Tantalum and Its New Development for Bone Tissue Engineering. Materials 2021, 14, 2647. Huang, G.; Pan, S.-T.; Qiu, J.-X. The Clinical Application of Porous Tantalum and Its New Development for Bone Tissue Engineering. Materials 2021, 14, 2647.

Abstract

Porous tantalum (Ta) is a promising biomaterial and has been applied in orthopedics and dentistry for nearly two decades. The high porosity and interconnected pore structure of porous Ta promise fine bone ingrowth and new bone formation within the inner space, which further guarantee rapid osteointegration and bone-implant stability in long term. Porous Ta has high wettability and surface energy that can facilitate adherence, proliferation and mineralization of osteoblasts. Meanwhile, low elastic modulus and high friction coefficient of porous Ta can effectively avoid stress shield effect, minimize marginal bone loss and ensure primary stability. Accordingly, the satisfactory clinical application of porous Ta based implants or prostheses are mainly derived from its excellent biological and mechanical properties. With the advent of additive manufacturing, personalized porous Ta based implants or prostheses have shown their clinical value in the treatment of individual patient who need specially designed implant or prosthesis. In addition, many modification methods have been introduced to enhance the bioactivity and antibacterial property of porous Ta with promising in vitro and in vivo research results. In any case, choosing suitable patients is of great importance to guarantee surgical success after porous Ta insertion.

Keywords

porous tantalum; clinical application; additive manufacturing; surface modification; bone tissue engineering

Subject

Medicine and Pharmacology, Immunology and Allergy

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.