Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Comparison of Antioxidant Properties of Dehydrolutein with Lutein and Zeaxanthin, and their Effects on Retinal Pigment Epithelial Cells

Version 1 : Received: 1 April 2021 / Approved: 2 April 2021 / Online: 2 April 2021 (14:04:44 CEST)

How to cite: Rozanowska, M.; Czuba-Pelech, B.; Landrum, J.T.; Rozanowski, B. Comparison of Antioxidant Properties of Dehydrolutein with Lutein and Zeaxanthin, and their Effects on Retinal Pigment Epithelial Cells. Preprints 2021, 2021040066 (doi: 10.20944/preprints202104.0066.v1). Rozanowska, M.; Czuba-Pelech, B.; Landrum, J.T.; Rozanowski, B. Comparison of Antioxidant Properties of Dehydrolutein with Lutein and Zeaxanthin, and their Effects on Retinal Pigment Epithelial Cells. Preprints 2021, 2021040066 (doi: 10.20944/preprints202104.0066.v1).

Abstract

Dehydrolutein accumulates in substantial concentrations in the retina. The aim of this study was to compare antioxidant properties of dehydrolutein with other retinal carotenoids, lutein and zeaxanthin, and their effects on ARPE-19 cells. The time-resolved detection of characteristic singlet oxygen phosphorescence was used to compare the singlet oxygen quenching rate constants of dehydrolutein, lutein, and zeaxanthin. The effects of these carotenoids on photosensitized oxidation were tested in liposomes, where photooxidation was induced by light in the presence of photosensitizers, and monitored by oximetry. To compare the uptake of dehydrolutein, lutein, and zeaxanthin, ARPE-19 cells were incubated with carotenoids for up to 19 days, and carotenoid contents were determined by spectrophotometry in cell extracts. To investigate the effects of carotenoids on phototocytotoxicity, cells were exposed to light in the presence of rose bengal or all-trans-retinal. The results demonstrate that the rate constants for singlet oxygen quenching are 0.77x1010, 0.55x1010, and 1.23x1010 M-1s-1 for dehydrolutein, lutein and zeaxanthin, respectively. Overall, dehydrolutein is similar to lutein or zeaxanthin in protection of lipids against photosensitized oxidation. ARPE-19 cells accumulate substantial amounts of both zeaxanthin and lutein but no detectable amounts of dehydrolutein. Cells pre-incubated with carotenoids are equally susceptible to photosensitized damage as cells without carotenoids. Carotenoids provided to cells together with the extracellular photosensitizers offer partial protection against photodamage. In conclusion, the antioxidant properties of dehydrolutein are similar to lutein and zeaxanthin. The mechanism responsible for its lack of accumulation in ARPE-19 cells deserves further investigation.

Subject Areas

carotenoid; lutein; zexanthin; dehydrolutein; retina; retinal pigment epithelium; singlet oxygen; photosensitized oxidation; age-related macular degeneration.

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.