Preprint
Article

This version is not peer-reviewed.

Fractional Line Integral

A peer-reviewed article of this preprint also exists.

Submitted:

30 March 2021

Posted:

31 March 2021

You are already at the latest version

Abstract
This paper proposes a definition of fractional line integral, generalising the concept of fractional definite integral. The proposal replicates the properties of the classic definite integral, namely the fundamental theorem of integral calculus. It is based on the concept of fractional anti-derivative used to generalise the Barrow formula. To define the fractional line integrals the Gr\"unwald-Letnikov and Liouville directional derivatives are introduced and their properties described. The integral is defined first for broken line paths and afterwards to any regular curve
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated