Preprint
Article

This version is not peer-reviewed.

A Stochastic Condensation Mechanism for Inducing Underdispersion in Count Models

Submitted:

22 March 2021

Posted:

23 March 2021

You are already at the latest version

Abstract
It is quite easy to stochastically distort an original count variable to obtain a new count variable with relatively more variability than in the original variable. Many popular overdispersion models (variance greater than mean) can indeed be obtained by mixtures, compounding or randomlystopped sums. There is no analogous stochastic mechanism for the construction of underdispersed count variables (variance less than mean), starting from an original count distribution of interest. This work proposes a generic method to stochastically distort an original count variable to obtain a new count variable with relatively less variability than in the original variable. The proposed mechanism, termed condensation, attracts probability masses from the quantiles in the tails of the original distribution and redirect them toward quantiles around the expected value. If the original distribution can be simulated, then the simulation of variates from a condensed distribution is straightforward. Moreover, condensed distributions have a simple mean-parametrization, a characteristic useful in a count regression context. An application to the negative binomial distribution resulted in a distribution allowing under, equi and overdispersion. In addition to graphical insights, fields of applications of special cases of condensed Poisson and condensed negative binomial distributions were pointed out as an indication of the potential of condensation for a flexible analysis of count data
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated