Preprint
Article

This version is not peer-reviewed.

Fighting Deepfakes Using Body Language Analysis

A peer-reviewed article of this preprint also exists.

Submitted:

15 March 2021

Posted:

16 March 2021

Read the latest preprint version here

Abstract
Recent improvements in deepfake creation made deepfake videos more realistic. Open-source software has also made deepfake creation more accessible, which reduces the barrier to entry for deepfake creation. This could pose a threat to the public privacy. It is a potential danger if the deepfake creation techniques are used by people with an ulterior motive to produce deepfake videos of world leaders to disrupt the order of the countries and the world. Research into automated detection for deepfaked media is therefore essential for public safety. We propose in this work the use of upper body language analysis for deepfake detection. Specifically, a many-to-one LSTM network was designed and trained as a classification model is trained for deepfake detection. Different models trained using various hyper-parameters to build a final model with benchmark accuracy. We achieve 94.39% accuracy on a test deepfake set. The experimental results show that upper body language can effectively provide identification and deepfake detection.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated