Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Multipotent Human Mesenchymal Stem/Stromal Cells: An Updated Review on Historical Background, Recent Trends and Advances in their Clinical Applications

Version 1 : Received: 12 March 2021 / Approved: 15 March 2021 / Online: 15 March 2021 (11:51:28 CET)

A peer-reviewed article of this Preprint also exists.

Kevin Dzobo.OMICS: A Journal of Integrative Biology.Jun 2021.342-357. Kevin Dzobo.OMICS: A Journal of Integrative Biology.Jun 2021.342-357.


Early reports demonstrated the presence of cells with stem-like properties in bone marrow, with these cells having both hematopoietic and mesenchymal lineages. Over the years, various investigations have purified and characterized mesenchymal stromal/stem cells (MSCs) from different human tissues as cells with multi-lineage differentiation potential under the appropriate conditions. Due to their appealing characteristics and potential, MSCs are leveraged in many applications including medicine, oncology, bioprinting and as recent as treatment of COVID-19. To date, reports indicate mesenchymal stromal/stem cells have varied differentiation capabilities into different cell types and demonstrate immunomodulating and anti-inflammatory properties. Reports indicate that different MSCs microenvironments or niche and the resulting heterogeneity may influence their behavior and differentiation capacity. The potential clinical applications of mesenchymal stromal/stem cells have led to an avalanche of research reports on their properties and hundreds of clinical trials being undertaken. The future looks bright and promising for mesenchymal stem cell research with many clinical trials under way to prove their utility in many applications and in the clinic. This report provides an update on the potential broader use of mesenchymal stromal/stem cells, review early observations of the presence of these cells in the bone marrow and their magnificent differentiation capabilities and immunomodulation.


Mesenchymal stem/stromal cells; regenerative medicine; tissue engineering; Clinical Application; Differentiation Capacity; Cellular Immunomodulation; Inflammation; Signaling Cells; Transplantation; International Society for Cell and Gene Therapy


Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0

Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.