Submitted:

08 March 2021

Posted:

10 March 2021

Read the latest preprint version here

A peer-reviewed article of this preprint also exists.

Abstract
Tuberculosis (TB) is an airborne infectious disease caused by organisms in the Mycobacterium tuberculosis (Mtb) complex. In many low and middle-income countries, TB remains a major cause of morbidity and mortality. This work performs a benchmarking of machine learning models using a Brazilian health database related to TB confirmed cases and deaths, named SINAN-TB. The goal is to predict the probability of death by TB, assisting the TB prognosis and decision taking process. The database originally has 130 features, and many of these features had missing data, or incorrect data regarding the notification dates or birth dates, or were not related to the clinical and laboratory data. These data are treated, and after the preprocessing step, a new database with 38 features and 24,015 records is generated, having 22,876 TB cases and 1,139 deaths by TB. We design two experiments to investigated how the data unbalancing impacts on the models performance. With the evaluation of the f1-macro metric, we verify that the best result is achieved when using the imbalanced database, with the ensemble model that is composed of gradient boosting (GB), random forest (RF) and multi-layer perceptron (MLP) models.
Keywords: 
machine learning; benchmarking; tuberculosis; prognosis
Subject: 
Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

365

Views

698

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated