Preprint
Article

Traffic Flows Analysis in High-Speed Computer Networks Using Time Series

This version is not peer-reviewed.

Submitted:

05 March 2021

Posted:

10 March 2021

You are already at the latest version

Abstract
This article explores the required amount of time series points from a high-speed traffic network to accurately estimate the Hurst exponent. The methodology consists in designing an experiment using estimators that are applied to time series, followed by addressing the minimum amount of points required to obtain accurate estimates of the Hurst exponent in real-time. The methodology addresses the exhaustive analysis of the Hurst exponent considering bias behavior, standard deviation, mean square error, and convergence using fractional Gaussian noise signals with stationary increases. Our results show that the Whittle estimator successfully estimates the Hurst exponent in series with few points. Based on the results obtained, a minimum length for the time series is empirically proposed. Finally, to validate the results, the methodology is applied to real traffic captures in a high-speed network based on the IEEE 802.3ab standard.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

196

Views

232

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated