Preprint
Article

This version is not peer-reviewed.

Computational Experience with Piecewise-Linear Relaxations for Petroleum Refinery Planning

A peer-reviewed article of this preprint also exists.

Submitted:

27 February 2021

Posted:

03 March 2021

You are already at the latest version

Abstract
Refinery planning optimization is a challenging problem as regards handling the nonconvex bilinearity mainly due to pooling operations in processes such as crude oil distillation and product blending. This work investigates the performance of several representative piecewise-linear (or piecewise-affine) relaxation schemes (referred to as McCormick, bm, nf5, nf6t, and de (which is a new approach proposed based on eigenvector decomposition) that mainly give rise to mixed-integer optimization programs to convexify a bilinear term using predetermined univariate partitioning for instances of uniform and non-uniform partition sizes. Computational results show that applying these schemes give improved relaxation tightness than only applying convex and concave envelopes as estimators. Uniform partition sizes typically perform better in terms of relaxation solution quality and convergence behavior. It is also seen that there is a limit on the number of partitions that contributes to relaxation tightness, which does not necessarily correspond to a larger number of partitions, while a direct relation between relaxation size and tightness does not always hold for non-uniform partition sizes.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated