Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Control of a Robotic Swarm Formation to Track a Dynamic Target With Communication Constraints: Analysis and Simulation

Version 1 : Received: 1 March 2021 / Approved: 2 March 2021 / Online: 2 March 2021 (15:57:10 CET)

A peer-reviewed article of this Preprint also exists.

Coquet, C.; Arnold, A.; Bouvet, P.-J. Control of a Robotic Swarm Formation to Track a Dynamic Target with Communication Constraints: Analysis and Simulation. Appl. Sci. 2021, 11, 3179. Coquet, C.; Arnold, A.; Bouvet, P.-J. Control of a Robotic Swarm Formation to Track a Dynamic Target with Communication Constraints: Analysis and Simulation. Appl. Sci. 2021, 11, 3179.

Journal reference: Appl. Sci. 2021, 11, 3179
DOI: 10.3390/app11073179

Abstract

We describe and analyze the Local Charged Particle Swarm Optimization (LCPSO) algorithm, that we designed to solve the problem of tracking a moving target releasing scalar information in a constrained environment using a swarm of agents. This method is inspired by flocking algorithms and the PSO algorithm for function optimization. Four parameters drive LCPSO: the number of agents; the inertia weight; the attraction/repulsion weight; and the inter-agent distance. Using APF, we provide a mathematical analysis of the LCPSO algorithm under some simplifying assumptions. First, the swarm will aggregate and attain a stable formation, whatever the initial conditions. Second, the swarm moves thanks to an attractor in the swarm, which serves as a guide for the other agents to head for the target. By focusing on a simple application of target tracking with communication constraints, we then remove those assumptions one by one. We show the algorithm is resilient to constraints on the communication range, and the behavior of the target. Results on simulation confirm our theoretical analysis. This provides useful guidelines to understand and control the LCPSO algorithm as a function of swarm characteristics as well as the nature of the target.

Keywords

PSO; OSL; tracking; flocking; swarm

Subject

MATHEMATICS & COMPUTER SCIENCE, Algebra & Number Theory

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.