Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The One-way FSI Method Based on RANS-FEM for the Open Water Test of a Marine Propeller at the Different Advance Coefficient

Version 1 : Received: 26 January 2021 / Approved: 27 January 2021 / Online: 27 January 2021 (12:10:19 CET)

A peer-reviewed article of this Preprint also exists.

Masoomi, M.; Mosavi, A. The One-Way FSI Method Based on RANS-FEM for the Open Water Test of a Marine Propeller at the Different Loading Conditions. J. Mar. Sci. Eng. 2021, 9, 351. Masoomi, M.; Mosavi, A. The One-Way FSI Method Based on RANS-FEM for the Open Water Test of a Marine Propeller at the Different Loading Conditions. J. Mar. Sci. Eng. 2021, 9, 351.

Journal reference: J. Mar. Sci. Eng. 2021, 9, 351
DOI: 10.3390/jmse9040351

Abstract

This study addressed a Fluid-Structure Interaction of an open Water test for vp1304 propeller to predict pressure and stress distributions with a low cost and high precision method. The most striking aspect of such a method(one-way coupling) is to use one hydrodynamic solution for the number of different structural sets involved in other materials or different layup methods and combinations of layers. An open-access software(OpenFOAM) with an open-source code solver is used to simulate the fluid domain. Abaqus is used To evaluate and predict the deformation and strength of the blade with the Finite Element Method(FEM). The coupling approach is based on dry condition, which means the added mass effects due to propeller blades vibration is neglected. The pressures imposed on the blades are extracted from the fluid solver for each time step. Then, These pressures role as a load condition for the structure solver. This approach was verified in the last paper(wedge impact); a key factor for the present solution is the rotational rate interrelated between two solution domains, which is explained in this paper. Finally, the blades' stress and strain are calculated and compared in each advance coefficient.

Keywords

Fluid-Structure Interaction; OpenFOAM; One-way approach; Structural Analysis

Subject

MATHEMATICS & COMPUTER SCIENCE, Algebra & Number Theory

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.