Preprint
Article

Analysis of Mechanical Behaviors of Waterbomb Thin-Shell Structures Under Quasi-Static Load

This version is not peer-reviewed.

Submitted:

11 January 2021

Posted:

12 January 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Waterbomb structures are origami-inspired deformable structural components used in new types of robots. They have a unique radially deployable ability that enables robots to better adapt to their environment. In this paper, we propose a series of new waterbomb structures with square, rectangle, and parallelogram base units. Through quasi-static axial and radial compression experiments and numerical simulations, we prove that the parallelogram waterbomb structure has a twist displacement mode along the axial direction. Compared with the square waterbomb structure, the proposed optimal design of the parallelogram waterbomb structure reduces the critical axial buckling load-to-weight ratio by 55.4% and increases the radial stiffness-to-weight ratio by 67.6%. The significant increase in the radial stiffness-to-weight ratio of the waterbomb structure and decrease in the critical axial buckling load-to-weight ratio make the proposed origami pattern attractive for practical robotics applications.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

517

Views

318

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated