Preprint
Article

This version is not peer-reviewed.

The Effect of Ni-Modified LSFCO Promoting Layer on the Gas Produced Through Co-Electrolysis of CO2 and H2O at Intermediate Temperatures

A peer-reviewed article of this preprint also exists.

Submitted:

21 December 2020

Posted:

22 December 2020

You are already at the latest version

Abstract
The co-electrolysis of CO2 and H2O at intermediate temperature is a viable approach for the power-to-gas conversion that deserves for further investigation, considering the need for green energy storage. The commercial solid oxide electrolyser is a promising device, but it is still facing to solve issues concerning the high operating temperatures and the improvement of gas value. In this paper we reported the recent findings of a simple approach that we have amply suggested for solid oxide cells consisting in the addition of a functional layer coated to the fuel electrode of commercial electrochemical cells. This approach simplifies the transition to the next generation of cells manufactured with the most promising materials currently developed and improves the gas value in the outlet stream of cell. Here, the material in use as a coating layer consisted of a Ni-modified La0.6Sr0.4Fe0.8Co0.2O3 which was developed and demonstrated as promising fuel electrode for solid oxide fuel cells. The results discussed in this paper proved the positive role of Ni-modified perovskite as a coating layer for the cathode, since an improvement of about twice was obtained about the quality of gas produced.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated