Preprint
Article

This version is not peer-reviewed.

Entangled Particles Spinning on the Black Hole Horizon

Submitted:

18 December 2020

Posted:

21 December 2020

You are already at the latest version

Abstract
In this paper, we present a technique to unify the Reissner–Nordstr¨om metric and the Kerr–Newman metric. We construct a specifific model and calculate the entanglement entropy of black horizon. We are interested in the entangled particle and antiparticle spinning on the black hole horizon. The two Reissner-Nordstr¨om horizons r±, are the results of the rotation of several entangled particle-antiparticle on the real horizon. The energy absorbed by a black hole is transformed into a kinetic energy of the entangled particle-antiparticles. This study provides a new type of black hole metric. We show that the rotation of an entangled system of a particle and an antiparticle can create a extremal black hole. We also explore some of the implications of this point of view for the black hole entanglement.
Keywords: 
;  ;  ;  
Subject: 
Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated