Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Isolation and Characterization of Novel Yeasts from Rumen Fluids for Potential Use as Additives for Ruminant Feeding

Version 1 : Received: 17 December 2020 / Approved: 18 December 2020 / Online: 18 December 2020 (07:26:28 CET)

A peer-reviewed article of this Preprint also exists.

Suntara, C.; Cherdthong, A.; Wanapat, M.; Uriyapongson, S.; Leelavatcharamas, V.; Sawaengkaew, J.; Chanjula, P.; Foiklang, S. Isolation and Characterization of Yeasts from Rumen Fluids for Potential Use as Additives in Ruminant Feeding. Veterinary Sciences 2021, 8, 52, doi:10.3390/vetsci8030052. Suntara, C.; Cherdthong, A.; Wanapat, M.; Uriyapongson, S.; Leelavatcharamas, V.; Sawaengkaew, J.; Chanjula, P.; Foiklang, S. Isolation and Characterization of Yeasts from Rumen Fluids for Potential Use as Additives in Ruminant Feeding. Veterinary Sciences 2021, 8, 52, doi:10.3390/vetsci8030052.

Abstract

We hypothesized that rumen fluid with yeast producing cellulase enzyme can occur and also produces a high biomass compared to S. cerevisiae. Therefore, the aim of this study was to screen and isolate yeast from rumen fluids with an experimental design method. We optimized a fermentation medium containing sugarcane molasses as a carbon source and urea as a nitrogen source to measure the efficiency of biomass production and cellulase activity. Two fistulated-crossbred Holstein Friesian steers, averaging 350 ± 20 kg body weight, were used to screen and isolate ruminal yeast. The two experiments were designed. A 12 × 3 × 3 factorial was used in a completely randomized design to determine biomass and carboxymethyl cellulase activity. Factor A was isolated yeasts and S. cerevisiae. Factor B was sugarcane molasses (M) concentration. Factor C was urea (U) concentration. Potential yeast was selected for identified and analyzed as a 4 × 3 factorial use in a completely randomized design including. Factor A was incubation times. Factor B was isolated yeast strains including code H-KKU20 (as P. kudriavzevii-KKU20), I-KKU20 (C. tropicalis-KKU20), and C-KKU20 (as Galactomyces sp.-KKU20). Isolation was under aerobic conditions, resulting in a total of 11 different colonies. We noted two appearances of colonies including, asymmetric colonies of isolated yeast (indicated as A, B, C, E, and J) and ovoid colonies (coded as D, F, G, H, I, and K). The highest biomass was observed in three yeasts including codes H, I, and C-KKU20 when inoculated in 25% molasses with 1% urea (M25+U1) (p <0.01). The highest CMCase activity was observed in yeast code H-KKU20 when inoculated in all media solutions (p <0.01). Ruminal yeasts strains H-KKU20, I-KKU20, and C-KKU20 were selected for their ability to produce biomass and their CMCase enzyme synthesis. Identification of isolates H-KKU20 and I-KKU20 revealed that those isolates belonged to Pichia kudriavzevii-KKU20 and Candida tropicalis-KKU20, while C-KKU20 was identified as Galactomyces sp.-KKU20. Two strains provided maximum cell growth: P. kudriavzevii-KKU20 (9.78 and 10.02 Log cell/ml) and C. tropicalis-KKU20 (9.53 and 9.6 Log cells/ml) at 60 and 72 h of incubation time, respectively. The highest ethanol production was observed in S. cerevisiae: 76.4, 77.8, 78.5, and 78.6 g/L at 36, 48, 60, and 72 h of incubation time, respectively (p <0.01). The P. kudriavzevii-KKU20 yielded the least reducing sugar about 30.6 and 29.8 g/L at 60 and 72 h of incubation time, respectively. It could be concluded that screening and isolating yeast from rumen fluids resulted in 11 different characteristics of yeasts. The first novel yeasts discovered in the rumen fluid of cattle were Pichia kudriavzevii-KKU20, Candida tropicalis-KKU20, and Galactomyces sp.- KKU20. P. kudriavzevii-KKU20 had higher results than the other yeasts in terms of biomass production, cellulase enzyme activity, and cell number.

Keywords

novel rumen yeast; screening; isolation; biomass of yeast; cellulase enzyme

Subject

Biology and Life Sciences, Anatomy and Physiology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.