Preprint
Article

This version is not peer-reviewed.

Intelligent Cyber-Attack Detection and Classification for Network-based Intrusion Detection Systems

A peer-reviewed article of this preprint also exists.

Submitted:

11 December 2020

Posted:

14 December 2020

You are already at the latest version

Abstract
With the latest advances in information and communication technologies, greater amounts of sensitive user and corporate information are constantly shared across the network making it susceptible to an attack that can compromise data confidentiality, integrity and availability. Intrusion Detection Systems (IDS) are important security mechanisms that can perform a timely detection of malicious events through the inspection of network traffic or host-based logs. Throughout the years, many machine learning techniques have proven to be successful at conducting anomaly detection but only a few considered the sequential nature of data. This work proposes a sequential approach and evaluates the performance of a Random Forest (RF), a Multi-Layer Perceptron (MLP) and a Long-Short Term Memory (LSTM) on the CIDDS-001 dataset. The resulting performance measures of this particular approach are compared with the ones obtained from a more traditional one, that only considers individual flow information, in order to determine which methodology best suits the concerned scenario. The experimental outcomes lead to believe that anomaly detection can be better addressed from a sequential perspective and that the LSTM is a very reliable model for acquiring sequential patterns in network traffic data, achieving an accuracy of 99.94% and a f1-score of 91.66%.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated