You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Scaling Law for the Velocity of Domino Toppling Motion in Curved Paths

Altmetrics

Downloads

440

Views

267

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

07 December 2020

Posted:

09 December 2020

You are already at the latest version

Alerts
Abstract
The arranged paths of dominoes have many shapes. The scaling law for the propagation speed of domino toppling has been extensively investigated. However, in all previous investigations, the scaling law for the velocity of domino toppling motion in curved lines was not taken into account. In the present work, the finite-element analysis (FEA) program ABAQUS was used to study the velocity of domino toppling motion in curved lines. It is shown that the domino propagation speed has a rising trend with increasing domino spacing in a straight line. It is also found that domino propagation speed is linearly proportional to the square root of domino separation. This research proved that the scaling law for the speed of domino toppling motion given by Sun (2020) is true [B-H. Sun, 2020. Scaling law for the propagation speed of domino toppling. AIP Advances, 10(9),095124.]. Moreover, the shape of domino arrangement paths has no influence on the scaling law for the propagation speed of dominoes but can affect the coefficient of the scaling law for the velocity. Therefore, the amendatory function for the propagation speed of dominoes in curved lines was formulated by the FEA data. The fitted amendatory function, $\varphi_{revise}$, provides the simple method for a domino player to quickly estimate the propagation speed of dominoes in curved lines.
Keywords: 
Subject: Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated