Preprint
Article

This version is not peer-reviewed.

Development of a Resolver-to-Digital Converter Based on Second-Order Difference Generalized Predictive Control

A peer-reviewed article of this preprint also exists.

Submitted:

06 January 2021

Posted:

08 January 2021

You are already at the latest version

Abstract
High-performance motor drives that operate in harsh conditions require an accurate and robust angular position measurement to correctly estimate the speed and reduce the torque ripple produced by angular estimation error. For that reason, a resolver is used in motor drives as a position sensor due to its robustness. A resolver-to-digital converter (RDC) is an observer used to get the angular position from the resolver signals. Most RDCs are based on angle tracking observers (ATOs). On the other hand, generalized predictive control (GPC) has become a powerful tool in developing controllers and observers for industrial applications. However, no GPC-based RDC with zero steady-state error during constant speed operation was proposed. This paper proposes an RDC based on a second-order difference GPC (SOD-GPC). In SOD-GPC, the second-order difference operator is applied to design a GPC model with two embedded integrators. Thus, the SOD-GPC is used to design a type-II ATO whose steady-state angle estimation error tends to zero during constant speed operation. Simulation and experimental results prove that the proposed RDC system has better performance than other literature approaches.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated