Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Bioengineered Scaffolds for Thermo-responsive Drug Delivery in Wound Healing

Version 1 : Received: 1 December 2020 / Approved: 1 December 2020 / Online: 1 December 2020 (13:55:35 CET)

A peer-reviewed article of this Preprint also exists.

Castillo-Henríquez, L.; Castro-Alpízar, J.; Lopretti-Correa, M.; Vega-Baudrit, J. Exploration of Bioengineered Scaffolds Composed of Thermo-Responsive Polymers for Drug Delivery in Wound Healing. Int. J. Mol. Sci. 2021, 22, 1408. Castillo-Henríquez, L.; Castro-Alpízar, J.; Lopretti-Correa, M.; Vega-Baudrit, J. Exploration of Bioengineered Scaffolds Composed of Thermo-Responsive Polymers for Drug Delivery in Wound Healing. Int. J. Mol. Sci. 2021, 22, 1408.

Abstract

innate and adaptive immune responses lead to wound healing by regulating a complex series of events promoting cellular cross-talk. An inflammatory response is presented with its characteristic clinical symptoms: heat, pain, redness, and swelling. Some smart thermo-responsive polymers like chitosan can be used to create biocompatible and biodegradable scaffolds with 3D architectures similar to human structures, allowing their efficient and safe use as tissue engineering and drug delivery systems in chronic wounds. Locally heated tumors above polymer lower critical solution temperature can induce its conversion into a hydrophobic form, enhancing drug release until the thermal stimulus is gone, where a lower release is due to the swelling of the material. This paper integrates the relevant reported contributions of bioengineered scaffolds for thermo-responsive drug delivery in wound healing. Therefore, we present a comprehensive review that aims to demonstrate the capacity of these systems to provide spatially and temporally controlled release strategies for one or more drugs used in wound healing. In this sense, the novel manufacturing techniques of 3D-printing and electrospinning are explored for the tuning of their physicochemical properties to adjust therapies according to the patient’s convenience, as well as reduce drug toxicity and side effects.

Keywords

drug delivery; immune response; inflammation; critical solution temperature; scaffolds; smart polymers; tissue engineering; thermo-responsive; wound healing.

Subject

Chemistry and Materials Science, Nanotechnology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.