Preprint
Article

This version is not peer-reviewed.

Neuronal Metabolism and Neuroprotection. Neuroprotective Effect of Fingolimod on Menadione Induced Mitochondrial Damage

A peer-reviewed article of this preprint also exists.

Submitted:

27 November 2020

Posted:

30 November 2020

You are already at the latest version

Abstract
Imbalance in the oxidative status in neurons, along with mitochondrial damage, are common characteristics in some neurodegenerative diseases. The maintenance in energy production is crucial to face and recover from the oxidative damage and the coexistence of different sources of energy production, such as mitochondrial and glycolytic ATP, allows faster adaptative mechanisms to situations of high energy demand and may help in the maintenance of neuronal function in stress situations. Fingolimod phosphate is a drug with neuroprotective and antioxidant actions, used in the treatment of Multiple Sclerosis. This work has been performed in a model of oxidative damage on neuronal cell cultures exposed to menadione, in presence or absence of fingolimod phosphate. We have studied the mitochondrial function and several pathways related with glucose metabolism, including oxidative, glycolytic and pentose phosphate in neuronal cells cultures. Our results showed a beneficial effect on neuronal survival probably based in the recovery of all, oxidative balance, glycolysis and pentose phosphate, promoted by fingolimod phosphate. These effects are mediated, at least in part by the interaction with its specific receptor. These actions would make this drug a potential tool to the treatment of neurodegenerative processes, either to slow progression or alleviate symptoms.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated