Preprint
Review

This version is not peer-reviewed.

Role of Immune Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

A peer-reviewed article of this preprint also exists.

Submitted:

17 November 2020

Posted:

18 November 2020

You are already at the latest version

Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS) characterized by varying degrees of demyelination of uncertain etiology, and is associated with specific environmental and genetic factors. Upon recognition of CNS antigens, the immune cells initiate an inflammatory process which leads to destruction and deterioration of the neurons. Innate immune cells such as macrophages, dendritic cells and natural killer cells are known to play critical roles in the pathogenesis of MS. Also, the activation of peripheral CD4+ T cells by CNS antigens leads to their extravasation into the CNS causing damages that exacerbates the disease. This could be accompanied by dysregulation of T regulatory cells and other cell types functions. Experimental autoimmune encephalomyelitis (EAE) is a mouse model used to study the pathophysiology of MS disease. In this review, we highlight the roles of innate and adaptive immune players in the pathogenesis of MS and EAE.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated