Preprint
Article

Analytic Automorphisms and Transitivity of Analytic Mappings

Altmetrics

Downloads

165

Views

143

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

16 November 2020

Posted:

18 November 2020

You are already at the latest version

Alerts
Abstract
In this paper we investigate analytic automorphisms of complex topological vector spaces and their applications to linear and nonlinear transitive operators. We constructed some examples of polynomial automorphisms which show that a natural analogue of the Jacobian Conjecture for infinite dimensional spaces is not true. Also, we prove that any separable Fréchet space supports a transitive analytic operator which is not a polynomial. We found some connections of analytic automorphisms and algebraic bases of symmetric polynomials and applications to hypercyclisity of composition operators.
Keywords: 
Subject: Computer Science and Mathematics  -   Analysis
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated