Preprint
Article

This version is not peer-reviewed.

Simulation of Spatial Strain Inhomogeneities in Lithium-Ion-Cells Due to Electrode Dilation Dependent on Internal and External Cell Structures

A peer-reviewed article of this preprint also exists.

Submitted:

04 November 2020

Posted:

06 November 2020

Read the latest preprint version here

Abstract
Electrochemical-mechanical interactions, in particular pressure-induced ones, have been identified to be a cause for lithium-plating in lithium-ion cells. Mechanically-induced porosity inhomogeneities in the separator layers due to electrode expansion during charging especially lead to cell internal balancing currents and can cause localized plating. To identify cell-format and cell-material dependent mechanical weak spots, a layer-resolved mechanical simulation of different cell types and cell-material combinations is presented in this work. The simulation results show distinctive layer strain patterns for different cell-types that coincide with localized lithium-plating found in post-mortem cells. Additionally, the effects of cell bracing in battery modules is investigated and a method to mitigate the increased layer strain due to bracing counterforces is proposed that also increases cell energy density for hardcase-type automotive cells.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated