Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Convert a Strongly Connected Directed Graph to a Black-and-White 3-SAT Problem by the Balatonboglár Model

Version 1 : Received: 4 November 2020 / Approved: 5 November 2020 / Online: 5 November 2020 (14:16:43 CET)

A peer-reviewed article of this Preprint also exists.

Kusper, G.; Biró, C. Convert a Strongly Connected Directed Graph to a Black-and-White 3-SAT Problem by the Balatonboglár Model. Algorithms 2020, 13, 321. Kusper, G.; Biró, C. Convert a Strongly Connected Directed Graph to a Black-and-White 3-SAT Problem by the Balatonboglár Model. Algorithms 2020, 13, 321.

Journal reference: Algorithms 2020, 13, 321
DOI: 10.3390/a13120321

Abstract

In a previous paper we defined the Black-and-White SAT problem which has exactly two solutions, where each variable is either true or false. We showed that Black-and-White $2$-SAT problems represent strongly connected directed graphs. We presented also the strong model of communication graphs. In this work we introduce two new models, the weak model, and the Balatonbogl\'{a}r model of communication graphs. A communication graph is a directed graph, where no self loops are allowed. In this work we show that the weak model of a strongly connected communication graph is a Black-and-White SAT problem. We prove a powerful theorem, the so called Transitions Theorem. This theorem states that for any model which is between the strong and the weak model, we have that this model represents strongly connected communication graphs as Blask-and-White SAT problems. We show that the Balatonbogl\'{a}r model is between the strong and the weak model, and it generates $3$-SAT problems, so the Balatonbogl\'{a}r model represents strongly connected communication graphs as Black-and-White $3$-SAT problems. Our motivation to study these models is the following: The strong model generates a $2$-SAT problem from the input directed graph, so it does not give us a deep insight how to convert a general SAT problem into a directed graph. The weak model generates huge models, because it represents all cycles, even non-simple cycles, of the input directed graph. We need something between them to gain more experience. From the Balatonbogl\'{a}r model we learned that it is enough to have a subset of a clause, which represents a cycle in the weak model, to make the Balatonbogl\'{a}r model more compact. We still do not know how to represent a SAT problem as a directed graph, but this work gives a strong link between two prominent fields of formal methods: SAT problem and directed graphs.

Subject Areas

SAT problem; Directed Graph; Strongly Connectedness

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.