Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Structure and Biomechanics during Xylem Vessel Transdifferentiation in Arabidopsis thaliana

Version 1 : Received: 2 November 2020 / Approved: 4 November 2020 / Online: 4 November 2020 (10:42:19 CET)

How to cite: Roumeli, E.; Ginsberg, L.; McDonald, R.; Spigolon, G.; Hendrickx, R.; Ohtani, M.; Demura, T.; Ravichandran, G.; Daraio, C. Structure and Biomechanics during Xylem Vessel Transdifferentiation in Arabidopsis thaliana. Preprints 2020, 2020110188 (doi: 10.20944/preprints202011.0188.v1). Roumeli, E.; Ginsberg, L.; McDonald, R.; Spigolon, G.; Hendrickx, R.; Ohtani, M.; Demura, T.; Ravichandran, G.; Daraio, C. Structure and Biomechanics during Xylem Vessel Transdifferentiation in Arabidopsis thaliana. Preprints 2020, 2020110188 (doi: 10.20944/preprints202011.0188.v1).

Abstract

Individual plant cells are the building blocks for all plantae and artificially constructed plant biomaterials, like biocomposites. Secondary cell walls (SCWs) are a key component for mediating mechanical strength and stiffness in both living vascular plants and biocomposite materials. In this paper, we study the structure and biomechanics of cultured plant cells during the cellular developmental stages associated with SCW formation. We use a model culture system that induces transdifferentiation of Arabidopsis thaliana cells to xylem vessel elements, upon treatment with dexamethasone (DEX). We group the transdifferentiation process into three distinct stages, based on morphological observations of the cell walls. The first stage includes cells with only a primary cell wall (PCW), the second covers cells that have formed a SCW, and the third stage includes cells with a ruptured tonoplast and partially or fully degraded PCW. We adopt a multi-scale approach to study the mechanical properties of cells in these three stages. We perform large-scale indentations with a micro-compression system and nanoscale indentations through atomic force microscopy (AFM), in three different osmotic conditions. We introduce a spring-based model to deconvolve the competing stiffness contributions from turgor pressure, PCW, SCW and cytoplasm in the stiffness of differentiating cells. Prior to triggering differentiation, cells in hypotonic pressure conditions are significantly stiffer than cells in isotonic or hypertonic conditions, highlighting the dominant role of turgor pressure. Plasmolyzed cells with a SCW reach similar levels of stiffness as cells with maximum turgor pressure. The stiffness of the PCW in all of these conditions is lower than the stiffness of the fully-formed SCW. Our results provide the first experimental characterization of the mechanics of SCW formation at single cell level.

Subject Areas

Plant biomechanics; turgor pressure; micro-compression; AFM; Arabidopsis thaliana; differentiation

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.