Preprint Article Version 1 This version is not peer-reviewed

Evaluation of Dissolution Enhancement of Aprepitant Drug in Ternary Pharmaceutical Solid Dispersions with Soluplus® and Poloxamer 188 Prepared by Melt Mixing

Version 1 : Received: 27 January 2019 / Approved: 23 February 2019 / Online: 28 February 2019 (00:00:00 CET)
Version 2 : Received: 27 January 2019 / Approved: 25 February 2019 / Online: 10 June 2019 (00:00:00 CEST)

A peer-reviewed article of this Preprint also exists.

Nanaki, S.; Eleftheriou, R.M.; Barmpalexis, P.; Kostoglou, M.; Karavas, E.; Bikiaris, D. Evaluation of Dissolution Enhancement of Aprepitant Drug in Ternary Pharmaceutical Solid Dispersions with Soluplus® and Poloxamer 188 Prepared by Melt Mixing. Sci 2019, 1, 48. Nanaki, S.; Eleftheriou, R.M.; Barmpalexis, P.; Kostoglou, M.; Karavas, E.; Bikiaris, D. Evaluation of Dissolution Enhancement of Aprepitant Drug in Ternary Pharmaceutical Solid Dispersions with Soluplus® and Poloxamer 188 Prepared by Melt Mixing. Sci 2019, 1, 48.

Journal reference: Sci 2019, 1, 48
DOI: 10.3390/sci1020048

Abstract

In the present study Aprepitant (APT) ternary solid dispersions (SDs) were developed and evaluated for the first time. Specifically, ternary SDs of APT with Poloxamer 188 and Soluplus® (SOL) were prepared via melt mixing and compared to binary APT/Poloxamer 188 and APT/SOL SDs. Initially, combined thermo-gravimetric and hot-stage polarized light microscopy studies indicated that all tested compounds were thermally stable up to 280 °C, while Poloxamer 188 acted as a plasticizer to SOL by significantly reducing the temperature required to fully solubilize the API during SD preparation. Differential scanning calorimetry combined with wide angle X-ray diffraction studies showed that crystalline API was dispersed in both binary and ternary SDs, while Fourier transformation-infrared spectroscopy studies revealed no molecular interactions among the components. Scanning electron microscopy combined with EDAX element analysis showed that the API was dispersed in nano-scale within the polymer matrices, while increasing APT content led to increasing API nano-crystals within the SDs. Finally, dissolution studies showed that the prepared formulations enhanced dissolution of Aprepitant and its mechanism analysis was further studied. A mathematical model was also investigated to evaluate the drug release mechanism.

Subject Areas

Aprepitant; soluplus; poloxamer 188; ternary solid dispersions; hot-melt mixing; dissolution enhancement

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.