Preprint
Technical Note

This version is not peer-reviewed.

Learning Dyadic Data and Predicting Unaccomplished Co-Occurrent Values by Mixture Model

Submitted:

01 November 2020

Posted:

02 November 2020

You are already at the latest version

Abstract
Dyadic data which is also called co-occurrence data (COD) contains co-occurrences of objects. Searching for statistical models to represent dyadic data is necessary. Fortunately, finite mixture model is a solid statistical model to learn and make inference on dyadic data because mixture model is built smoothly and reliably by expectation maximization (EM) algorithm which is suitable to inherent spareness of dyadic data. This research summarizes mixture models for dyadic data. When each co-occurrence in dyadic data is associated with a value, there are many unaccomplished values because a lot of co-occurrences are inexistent. In this research, these unaccomplished values are estimated as mean (expectation) of random variable given partial probabilistic distributions inside dyadic mixture model.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated