Preprint
Review

Modern Clinical Text Mining: A Guide and Review

This version is not peer-reviewed.

Submitted:

02 February 2021

Posted:

03 February 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Electronic health records (EHRs) are becoming a vital source of data for healthcare quality improvement, research, and operations. However, much of the most valuable information contained in EHRs remains buried in unstructured text. The field of clinical text mining has advanced rapidly in recent years, transitioning from rule-based approaches to machine learning and, more recently, deep learning. With new methods come new challenges, however, especially for those new to the field. This review provides an overview of clinical text mining for those who are encountering it for the first time (e.g. physician researchers, operational analytics teams, machine learning scientists from other domains). While not a comprehensive survey, it describes the state of the art, with a particular focus on new tasks and methods developed over the past few years. It also identifies key barriers between these remarkable technical advances and the practical realities of implementation at health systems and in industry.
Keywords: 
text mining; natural language processing; electronic health records; clinical text; machine learning
Subject: 
Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

3257

Views

1642

Comments

2

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated