Preprint
Article

Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals

This version is not peer-reviewed.

Submitted:

28 October 2020

Posted:

29 October 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Spike-and-wave discharge (SWD) pattern detection in electroencephalography (EEG) signals is a key signal processing problem. It is particularly important for overcoming time-consuming, difficult, and error-prone manual analysis of long-term EEG recordings. This paper presents a new SWD method with a low computational complexity that can be easily trained with data from standard medical protocols. Precisely, EEG signals are divided into time segments for which the Morlet 1-D decomposition is applied. The generalized Gaussian distribution (GGD) statistical model is fitted to the resulting wavelet coefficients. A k-nearest neighbors (k-NN) self-supervised classifier is trained using the GGD parameters to detect the spike-and-wave pattern. Experiments were conducted using 106 spike-and-wave signals and 106 non-spike-and-wave signals for training and another 96 annotated EEG segments from six human subjects for testing. The proposed SWD classification methodology achieved 95 % sensitivity (True positive rate), 87% specificity (True Negative Rate), and 92% accuracy. These results set the path to new research to study causes underlying the so-called absence epilepsy in long-term EEG recordings.
Keywords: 
Spike-and-wave; Generalized Gaussian distribution; EEG; Morlet wavelet; k-nearest neighbors classifier; Epilepsy
Subject: 
Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

187

Views

158

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated